不锈钢丝绳,不锈钢钢丝绳-江苏宝云不锈钢钢丝绳生产加工厂家

全国免费热线: 18221165969茅经理(微信同号)
导航菜单

X 射线的穿透力有多强 都能穿透那些物体:x射线能穿透多粗的钢丝绳

低能x射线是什么?

低能X射线是能量消耗低的射线,伦琴发现用速度很大的电子流冲击固体时,会有一种新的射线从固体上发射出来。这种人眼看不见的射线具有使很多固体(亚铂氰化钡、闪锌矿等)发出可见的荧光,使照相机底片感光以及使空气电离等能力。它还具有很大的穿透性,能透过许多对可见光不透明的物质,如黑纸、木料等。因为这种射线是前所未闻的,所以称为x射线,也称伦琴射线。
x射线的特点:
科学家们逐渐揭示了X射线的本质,作为一种波长极短,能量很大的电磁波,X射线的波长比可见光的波长更短(约在0.001~100 纳米,医学上应用的X射线波长约在0.001~0.1 纳米之间),它的光子能量比可见光的光子能量大几万至几十万倍。因此,X射线除具有可见光的一般性质外,还具有自身的特性。
x射线的物理效应
1.穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来。
2.电离作用。物质受X射线照射时,可使核外电子脱离原子轨道产生电离。利用电离电荷的多少可测定X射线的照射量,根据这个原理制成了X射线测量仪器。在电离作用下,气体能够导电;某些物质可以发生化学反应;在有机体内可以诱发各种生物效应。
3.荧光作用。X射线波长很短不可见,但它照射到某些化合物如磷、铂氰化钡、硫化锌镉、钨酸钙等时,可使物质发生荧光(可见光或紫外线),荧光的强弱与X射线量成正比。这种作用是X射线应用于透视的基础,利用这种荧光作用可制成荧光屏,用作透视时观察X射线通过人体组织的影像,也可制成增感屏,用作摄影时增强胶片的感光量。
4.热作用。物质所吸收的X射线能大部分被转变成热能,使物体温度升高。
5.干涉、衍射、反射、折射作用。这些作用在X射线显微镜、波长测定和物质结构分析中都得到应用。

X射线探伤检测是运用射线穿透被检验物质,检查是否存在缺陷,X射线穿能力取决于?

X射线探伤是指利用X射线能够穿透金属材料,并由于材料对射线的吸收和散射作用的不同,从而使胶片感光不一样,于是在底片上形成黑度不同的影像,据此来判断材料内部缺陷情况的一种检验方法。

中文名
X射线探伤
外文名
X-ray radiographic inspection
设备
射线源、射线胶片等
方法
X射线照相法等
应用
零部件探伤等
快速
导航
原理

设备

方法
简述
X射线能在无损检验技术中得到广泛应用的主要原因是:它能穿透可见光不能穿透的物质;它在物质中具有衰减作用和衰减规律;它能对某些物质发生光化学作用、电离作用和荧光现象。而且这些作用都将随着X射线强度的增加而增加。
X射线探伤是利用材料厚度不同对X射线吸收程度的差异,通过用X射线透视摄片法和工业电视实时成像,从软片和成像上显出材料、零部件及焊缝的内部缺陷。如裂纹、缩孔、气孔、夹渣、未溶合、未焊透等,确定位置和大小。根据观察其缺陷的性质、大小和部位来评定材料或制品的质量,从而防止由于材料内部缺陷、加工不良而引起的重大事故。
原理
X射线探伤是利用X射线可以穿透物质和在物质中具有衰减的特性,发现缺陷的一种无损检测方法。X射线的波长很短一般为0.001~0.1nm。X射线以光速直线传播,不受电场和磁场的影响,可穿透物质,在穿透过程中有衰减,能使胶片感光。
当X射线穿透物质时,由于射线与物质的相互作用,将产生一系列极为复杂的物理过程,其结果使射线被吸收和散射而失去一部分能量,强度相应减弱,这种现象称之为射线的衰减。X射线探伤的实质是根据被检验工件与其内部缺陷介质对射线能量衰减程度不同,而引起射线透过工件后强度差异,使感光材料(胶片)上获得缺陷投影所产生的潜影,经过暗室处理后获得缺陷影像,再对照标准评定工件内部缺陷的性质和底片级别。[1]
设备
(1)射线源
X射线机是X射线探伤的主要设备。国产X射线探伤机已系列化,分为移动式和便携式两大类。
(2)射线胶片
X射线胶片是一种片基两面均涂有结合层、乳剂层和保护层的专用胶片。一般按照乳剂中银盐颗粒度由小到大的顺序将胶片分为、、三种。银盐粒度越小缺陷影像越真切,但感光速度变慢,曝光量会成倍增加。因此,只有目的在于检测细小裂纹等缺陷时才选用微粒或超微粒的胶片。一般要求的选用级胶片用于感光速度快,照相质量要求不高的情况。锅炉压力容器选择胶片。
(3)增感屏
射线胶片对射线的吸收率是很低的,一般只能吸收射线强度的1%,其余绝大部分射线穿过胶片而损失掉,这将使透照时间大大延长。为了提高胶片的感光速度,缩短曝光时间,通常在胶片两侧夹以增感屏。
金属增感屏是由金属箔粘合在纸基或胶片基上制成。金属增感屏有前后屏之分,与射线胶片紧密接触,布置在先于胶片接受射线照射者称前屏,后于胶片接受射线照射者称后屏。增感屏被射线透射后可产生二次电子和二次射线,增加对胶片的感光作用。同时它对波长较长的散射线又有吸收作用(又称滤波作用),减小散射线引起的灰雾度,提高了底片的成像质量。
(4)线型象质计
象质计是用来检查透照技术和胶片处理质量的。衡量该质量的数值是象质指数,它等于底片上能识别出的最细钢丝线的编号。使用线型象质计时要注意以下几方面:
1)线型象质计应放在射线源一侧的工件表面被检焊缝区长度1/4处,钢丝应横跨焊缝并与焊缝轴线垂直,细钢丝置于外侧。当射线源一侧无法放置象质计时,也可放在胶片一侧的工件表面上,但应通过对比试验,使实际象质指数值达到规定的要求。
2)象质计放在胶片一侧工件表面上时,象质计应附加“F”标记,以示区别。
3)采用射线源置于圆心位置的周向曝光技术时,象质计应放在内壁,每隔90°放一个。
另外,射线探伤系统的组成还包括铅罩、铅光阑、铅遮板、底部铅板、暗盒、标记带,其中标记带可使每张射线底片与工件被检部位能始终对照。[1]
方法
X射线探伤除照相法外,还有X射线荧光屏观察法、电视观察法。
1.X射线照相法
这种方法是用感光胶片代替荧光观察法的荧光屏,当胶片被X射线照射而感光后,复经显影,即可显现出不同的感光程度。若射线的强度越大,则胶片的感光越多,显影后的黑度就越大。当某处与周围对比的黑度较大时,则可确认存在缺陷。照相法的灵敏度高、适应性强,同时胶片可长期保存待查。但程序较多、费时、成本较高。
2.X射线荧光屏观察法
X射线透过被检查物体后,把不同强度的射线,再投射在涂有荧光物质的荧光屏上,激发出不同强度的荧光而得到物体的影像。如果我们能直接从荧光屏上观察缺陷影像,就称为X射线荧光屏观察法。
荧光屏观察法与照相法的不同点:
荧光屏上所看到的缺陷影像是发亮的,而在底片上见到的缺陷影像是暗黑的;
前者不用暗室处理,因而暗室处理影响其影像质量的因素不存在,但其它因素与照相法同;
荧光屏上的荧光物质与照相法中增感屏上的荧光物质不同,它要求这种物质所发荧光对人的眼睛最灵敏。
荧光屏观察法能对工件连续检查,并能迅速得出结果。因此能节省大量的软片与工时,成本低。但是,荧光屏观察法的灵敏度要低一些。由于它不能像照相法那样把射线的能量积累起来,它只能检查较薄的结构简单的工件。
荧光屏观察法所用的设备是X射线发生器及其控制设备;荧光观察屏;观察和记录用的辅助没备;防护及传送设备等。[2]
3.X射线电视观察法
X射线照相法既费工时,又不经济,不适宜于批量生产的工厂。然而,X射线荧光屏观察法由于成象的光亮度差、灵敏度低,并且大多在荧光透视箱内进行,故也未广泛采用。随着光电微光技术的发展,微光象增强器和摄象管得到重视和广泛应用。
X射线电视观察法的优点是可以直接观察副物体内部在静态和动态下的情况,并能多次观察;不需照相法那一套处理系统;可以流水作业;快速。
此法的不足之处是灵敏度比照相法低;图象增强管接受辐射能量只达160kV左右,因而受到一定限制;由于泄露辐射的影响,检测几何形状较为复杂的零件较为困难

X 射线的穿透力有多强 都能穿透那些物体

波长介于 紫外线 和 γ射线 间的 电磁辐射 .由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线.波长小于0.1埃的称超硬X射线,在0.1埃范围内的称硬X射线,10埃范围内的称软X射线.实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.电子轰击靶极时会产生高温,故靶极必须用水冷却,有时还将靶极设计成转动式的.
X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射 ,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev )为普朗克常数,e 为电子电量,c 为真空中的光速.标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了 原子壳层结构 的特征.同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源.
X射线具有很强的穿透力它甚至能够轻而易举地穿透15毫米厚的铝板